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Zonal flow driven by strongly supercritical
convection in rotating spherical shells
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Thermal convection in a rotating spherical shell with free-slip boundaries can excite a
dominant mean zonal flow in the form of differentially rotating cylinders concentric to
the principal rotation axis. This process is studied numerically for Prandtl numbers of
order 1, Ekman numbers in the range E = 3× 10−4–10−5, and Rayleigh numbers up
to 100× critical. Small-scale convection transfers kinetic energy into the mean zonal
flow via Reynolds stresses. For low Ekman number and high Rayleigh number, the
force balance is predominantly among the Coriolis, inertial and buoyancy forces, and
viscosity plays a minor role. A modified Rayleigh number Ra∗ is introduced, which
does not depend on viscosity or thermal diffusivity, and asymptotic scaling laws
for the dependence of various properties on Ra∗ in the limit of negligible viscosity
(E → 0) are estimated from the numerical results. The ratio of kinetic energy in
the zonal flow to that in the non-zonal (convective) flow increases strongly with
Ra∗ at low supercritical Rayleigh number, but drops at high values of Ra∗. This is
probably caused by the gradual loss of geostrophy of the convective columns and
a corresponding decorrelation of Reynolds stresses. Applying the scaling laws to
convection in the molecular hydrogen envelopes of the large gas planets predicts the
observed magnitude of the zonal winds at their surfaces.

1. Introduction
Thermal convection in thick rotating spherical shells (as opposed to thin shells such

as planetary atmospheres or ocean layers) plays a role in various cosmic objects, for
example the Earth’s liquid core, stars, the large fluid planets of the solar system and
perhaps the newly discovered Jupiter-sized extrasolar planets. Linear theory (Roberts
1968; Busse 1970; Jones, Soward & Mussa 2000) predicts that at small Ekman number
E = ν/ΩD2, where ν is viscosity, Ω rotation frequency and D the shell thickness, the
flow at the onset of convection is organized in nearly geostrophic columns whose
width scales as E1/3. This has been confirmed in experimental (Busse & Carrigan
1976) and numerical studies (Zhang 1992). Of particular interest is the excitation of
a strong mean zonal flow, or differential rotation, such as is found in the Sun, at the
surface of the large gas planets, and perhaps in the Earth’s core. In an electrically
conducting fluid, differential rotation can play an important role in the generation
of toroidal magnetic field; however, the electromagnetic forces will also tend to
break differential motions. In the insulating molecular hydrogen layers of Jupiter and
Saturn, where electromagnetic coupling plays no role, the zonal flow can become very
strong in relation to the velocity of convection. At the surface of Jupiter the mean
zonal flow is approximately five times stronger than the non-zonal (eddy) component
(Ingersoll et al. 1981). Busse (1983) suggested that the internal convection transfers
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kinetic energy into differential rotation of geostrophic cylinders that extend through
the planetary interior. The latitudinal flow bands would be the surface expressions of
these cylinders. However, this interpretation remained contested (e.g. Williams 1985).

Columnar convection can drive a large-scale zonal flow through Reynolds stresses,
which arise from the inertial term u · ∇u in the Navier–Stokes equation when the uφ-
(azimuthal) and the us- (cylindrically radial) velocity components are correlated. The
curvature of the outer shell boundary, on which the convection columns impinge,
causes a tilt of the columns, which implies a correlation of the two flow components
(Busse 1983, 1994). Because the zonal flow is driven through the nonlinear term in
the Navier–Stokes equation, its amplitude relative the convective flow velocity can
only be predicted by finite-amplitude calculations. Zhang (1992) showed in numerical
calculations that the zonal velocity can dominate the convective velocity even at
rather weakly supercritical Rayleigh numbers when the Prandtl number is small. Sun,
Schubert & Glatzmaier (1993) reported differential rotation in multiple cylinders for a
strongly supercritical Rayleigh number, but found the zonal velocity to be an order of
magnitude weaker than the convective velocity. However, their calculation did not get
beyond the initial spin-up stage (Christensen 2001) and the result is not representative
of an equilibrated state. A systematic exploration of the pattern and properties of
convection at Rayleigh numbers up to ten times critical has been performed by
Ardes, Busse & Wicht (1997) and Tilgner & Busse (1997) at an Ekman number of
the order 10−3. More recent numerical calculations at Ekman numbers around 10−4

confirmed the dominance of zonal flow at Rayleigh numbers a few times supercritical
(Grote, Busse & Tilgner 2000; Aurnou & Olson 2001; Christensen 2001; Grote &
Busse 2001). The zonal flow is prograde at low latitude near the outer boundary
and retrograde near the tangent cylinder that encloses the central core. At a Prandtl
number of 1 three different regimes have been identified depending on the Rayleigh
number. Up to two or three times the critical value, convection is stationary aside
from a longitudial drift of the pattern and the zonal velocity is less than or equal to
the convective velocity. At Rayleigh numbers about ten times supercritical the zonal
flow dominates by a factor that depends on the Ekman number and convection is
strongly oscillatory (Grote et al. 2000). At even higher Rayleigh number convection
is vigorous at all times and fills the entire volume (Christensen 2001).

Free-slip boundaries are a requirement for dominant zonal flow, at least in the
parameter range covered by the numerical simulations. With rigid boundaries, the
zonal flow has a similar pattern, but contributes only 10–20% to the total kinetic
energy (Aurnou & Olson 2001). In laboratory experiments with rotating spheres lower
Ekman numbers can be achieved than in current numerical models. Sumita & Olson
(2000) observed significant zonal flow in experiments at high supercritical Rayleigh
number. Aubert et al. (2001) showed in experiments with liquid gallium that at very
low Prandtl number the zonal flow dominates even in a container with rigid walls.

Compared to geophysical or astrophysical applications, the numerical simulations
and to a lesser extent the laboratory experiments are performed at much more
moderate parameter values, in particular at Ekman numbers that are many orders of
magnitude larger than the planetary values. Hence viscosity (and thermal diffusivity)
plays a larger role and the dynamic flow regimes may differ. Aubert et al. (2001)
present a scaling analysis suggesting that in their gallium experiments viscosity is
negligible for the convective flow and convection is controlled by a balance between
Coriolis force, inertia and buoyancy.

The present paper extends the numerical analysis by Christensen (2001) and
concentrates on fully developed convection at Rayleigh numbers up to 100× critical
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at the lowest practical values of the Ekman number E > 10−5. The main pur-
pose is to find asymptotic relations for the limit where viscosity plays a negligible
role.

2. Equations and numerical method
Thermal convection of a Boussinesq fluid of constant material properties in a

spherical shell rotating with the mean frequency Ω about the z-direction is considered.
Gravity is assumed to vary linearly between the inner radius ri and outer radius ro.
The ratio η = ri/ro is set to 0.35. The boundaries are isothermal with an imposed
temperature contrast of ∆T and the free-slip condition is used.

With the shell thickness D = ro − ri as length scale, ∆T as temperature scale and
Ω−1 as time scale, the dimensionless equations for the velocity u, temperature T and
non-hydrostatic pressure P are

∂u

∂t
+ u · ∇u+ 2ẑ × u+ ∇P = E∇2u+ Ra∗r/roT , (2.1)

∇ · u = 0, (2.2)

∂T

∂t
+ u · ∇T = EPr−1∇2T . (2.3)

Pr = ν/κ is the Prandtl number, with κ the thermal diffusivity. We note that with the
chosen scaling the dimensionless velocity is equivalent to a local Rossby number. In
most calculations Pr is set to 1, but in § 3.5 the influence of varying Pr is addressed.
Conventionally, time is scaled by the thermal or viscous diffusion time in convection
problems. Because here time is scaled by the rotation period, a modified Rayleigh
number appears in the equations:

Ra∗ =
αgo∆T

Ω2D
, (2.4)

where α is thermal expansivity and go gravity at the outer radius ro. The relation to
the usual form of Rayleigh number

Ra =
αgo∆TD

3

κν
, (2.5)

is given by

Ra∗ = RaE2Pr−1. (2.6)

The main advantage of the modified form of the Rayleigh number is that it depends
neither on viscosity nor on the thermal diffusivity. In a regime where viscosity does
not play an important role in the force balance, the properties of the flow should be a
function of Ra∗ rather than of Ra. It is also useful to introduce a modified Rayleigh
number based on the heat flux instead of the temperature contrast:

Ra∗q =
ηαgoq

ρcΩ3D2
= Ra∗Nu∗ = RaNuE3Pr−2. (2.7)

Here q is the heat flux per unit area on the outer boundary, ρ the density, c the
specific heat capacity. Nu∗ is a modified Nusselt number as a measure of radial heat
transport:

Nu∗ = NuEPr−1 =
ηq

ρc∆TΩD
, (2.8)
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where

Nu = ηqD/(ρcκ∆T ) (2.9)

is the usual Nusselt number; the geometry factor η ensures that Nu = 1 in the conduc-
tive state. The advantage of the modified Nusselt number is again the independence
from the diffusion parameter. The flux-based Rayleigh number Ra∗q is, for fixed tem-
perature boundary conditions, not a control parameter and must be calculated a
posteriori. However, for an application to geophysical and astrophysical problems, it
is useful to express results in terms of Ra∗q , because fair estimates for the heat flux are
usually available whereas the driving (superadiabatic) temperature contrast is poorly
known.

In order to solve equations (2.1)–(2.3), the velocity is represented by poloidal (W )
and toroidal (Z ) scalar potentials:

u = ∇× ∇×W r̂ + ∇× Z r̂. (2.10)

W , Z , P and T are expanded in Chebychev polynomials up to degree Nc in the
radial direction and in spherical harmonic functions up to degree and order `max in
the angular (θ, φ) coordinates. Equations for W and P combined are obtained from
the radial component and from the horizontal divergence of (2.1); the equation for Z
is obtained from the radial component of the curl of equation (2.1). The Chebychev
coefficients are calculated separately for each harmonic mode (`, m) by a collocation
method on Nr radial grid points given by rk = (ri+ro+cos(kπ/Nr))/2. Terms resulting
from diffusion, ∇P , and the explicit time derivatives decouple in (`, m) and are treated
implicitly. Nonlinear terms and the Coriolis term are treated explicity by calculating
them on a grid in (r, θ, φ) and projecting the result on the different harmonic modes
(spectral transform method). To reduce aliasing effects, the number of latitudinal (Nθ)
and longitudinal (Nφ) grid points is larger than `max or 2`max, respectively; likewise
Nr > Nc. Complete de-aliasing would be achieved when the number of grid points is
1.5 times the number of modes, but an intermediate factor was found to be sufficient
in the present models. The solution is advanced in time by a second-order Adams–
Bashforth scheme and the time step is limited to a fraction of the Courant step. A
more detailed description of the method is given in Glatzmaier (1984) or Tilgner
(1999).

At the highest Ekman number convection is modelled for the full sphere without
symmetry assumptions. For E 6 10−4 twofold symmetry in longitude is assumed
(ms = 2) or fourfold symmetry (ms = 4) in the most demanding calculations. This
retains only terms of even order m or multiples of four, respectively, in the harmonic
expansion. Because convection at low Ekman number is dominated by high azimuthal
wavenumbers, this is not considered to be a serious restriction. At low supercritical
Rayleigh numbers each calculation was started from a conductive thermal state with
superimposed noise. At high Ra a solution at different parameter values was taken
as starting point.

The kinetic energy density is

Ek =
1

VsE2

∫
u2 dV , (2.11)

where Vs is the shell volume. Taking the integral (2.11) only over the poloidal com-
ponents of the velocity field, the axisymmetric toroidal component, or the harmonic
terms with m > 0, gives the poloidal energy Epol , the zonal wind energy Em=0

tor , or the
non-zonal energy Enz , respectively. The time evolution of energy components and of
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Figure 1. Time series for convection at E = 10−5, Pr = 1, and a Rayleigh number 11.9× supercritical
in (a, b) and 105× supercritical in (c, d ). The upper lines in (a) and (c) are the zonal wind energies
while the lower lines are the poloidal energies multiplied by a factor of 10. (b) and (d ) show the
Nusselt numbers.

E Pr Ra∗crit mcrit

3× 10−4 1 0.016790 6
1× 10−4 1 0.006510 8
3× 10−5 1 0.002413 12
1× 10−5 1 0.001005 16
1× 10−5 (rigid) 1 0.001057 15
1× 10−4 0.3 0.012120 7
1× 10−4 3 0.003078 8

Table 1. Critical Rayleigh number and azimuthal wavenumber.

the Nusselt number have been monitored in each case to ensure that the solution is
integrated past the transient stage. Two examples are shown in figure 1. Represen-
tative mean values of various properties are calculated by averaging only the final
part of each time series where no appreciable drift is found. The question of the time
required for the solution to equilibrate is further discussed in § 3.2.

3. Results
Critical values of the Rayleigh number Ra∗crit and the critical azimuthal wavenumber

mcrit have been calculated by monitoring the growth or decay of small perturbations
of the conductive temperature profile. The results with an estimated accuracy of better
than 1% are listed in table 1.

The variation of Ra∗crit with the Ekman number is slightly stronger in this range
than the asymptotic dependence with E2/3, equivalent to the variation of Racrit with
E−4/3 (Busse 1970), but seems to approach the predicted exponent at lower E.

3.1. Flow regimes at Pr = 1

Figures 2 and 3 illustrate some characteristic pattern of convection at an Ekman
number of 10−5 for weakly and strongly supercritical Rayleigh number, respectively.
At low Rayleigh number, the convection pattern is stationary in a drifting frame
of reference. Convection occurs only outside the inner-core tangent cylinder but is
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(a) (b) (c) (d)

Figure 2. Quasi-stationary convection at Ra∗ = 0.0015, E = 10−5, Pr = 1. (a) Isotherms, (b)
z-component of vorticity ωz in the equatorial plane, (c) ωz in a cut along the rotation axis,
(d ) azimuthal velocity in the same cut. Contour steps are 0.1 for T , 2.5× 10−3 for ωz and 3× 10−5

for uφ. Positive values of vorticity and velocity in yellow to red colours, negative in blue.

(a) (b) (c) (d)

Figure 3. Chaotic convection at Ra∗ = 0.045, E = 10−5, Pr = 1. (a) Isotherms, (b) z-component of
vorticity ωz in the equatorial plane, (c) ωz in a cut along the rotation axis, (d ) azimuthal velocity
in the same cut. Contour steps are 0.06 for T , 8× 10−2 for ωz and 8× 10−3 for uφ.

strongly concentrated near its boundary. In most of the volume of the spherical shell
the fluid is nearly stagnant. In equatorial sections (figure 2a, b) a pinwheel pattern
can be seen in the vorticity and temperature fields. Despite the fairly low Rayleigh
number, the mean zonal flow carries 62% of the total kinetic energy. The flow is
strongly geostrophic, i.e. nearly independent of the z-coordinate (figure 2c, d ). At
high Rayleigh number, convection is very chaotic and fills the entire space, including
the region inside the tangent cylinder. The mean zonal flow dominates strongly and
contains on time-average 97.6% of the kinetic energy in this case. Thermal plumes
are strongly tilted in the prograde direction by the shear of the zonal flow (figure 3a).
However, individual convective vortices in the equatorial plane are rather scattered
and do not form convection cells that stretch over the entire radius (figure 3b). A
preferred prograde tilt of the vortices is discernible, but is not strongly pronounced.
The zonal flow in particular is still approximately geostrophic (figure 3d ). Individual
convective vortices are elongated along the rotation axis; however, some bend away
from the z-direction, and they are often not continuous throughout the entire shell
(figure 3c).
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Time-averaged properties of the flow are listed in table 2 for all calculations with a
Prandtl number of 1. The numerical resolution is also indicated. The Reynolds number
based on the r.m.s.-velocity is Re =

√
2Ek and the Reynolds number for the poloidal

flow alone, Repol , is obtained accordingly with Epol . The latter describes the vigour of
the convective flow (without the zonal wind). While columnar convection comprises
both poloidal and toroidal flow components of about equal strength, the poloidal
part alone transports heat in the radial direction and is therefore characteristic of the
convective flow per se. The respective Rossby numbers are obtained from Ro = ERe
and Ropol = ERepol .

For Rayleigh numbers larger than a few times critical, the flow becomes time
dependent. At about 10 times supercritical the flow is strongly oscillatory (figure 1a, b).
In particular, the vigour of the convective part changes drastically: periods of virtual
quiescence are interrupted by short and intense bursts in a nearly periodic manner
(Grote et al. 2000; Grote & Busse 2001; Christensen 2001). The convective bursts
replenish the energy in the mean zonal flow, which decays by viscous friction between
these events. During a burst, the convective flow fills the entire volume outside the
tangent cylinder, whereas the weak residual convection between bursts is restricted to
the vicinity of the tangent cylinder boundary. In order to quantify the degree of time
dependence, the variance of the poloidal kinetic energy with time, Varpol , normalized
with its mean value, is listed in table 2. The relative variance becomes larger for
lower Ekman numbers, and peaks at nearly 200% for E = 10−5. However, while these
strong oscillations are a remarkable phenomenon, they are restricted to intermediate
Rayleigh numbers. At sufficiently supercritical Rayleigh number, convection is always
vigorous and space-filling (figure 1c), and the relative variance in the poloidal kinetic
energy becomes small. This is called the regime of fully developed convection. Also,
very pronounced oscillations are found only for a Prandtl number of 1. Both at larger
and smaller Prandtl number the oscillations are weaker and less regular.

3.2. Validation of results

The use of a restricted number of azimuthal modes and the rather limited run time
of most simulations (a fraction of the viscous diffusion time D2/ν at high Rayleigh
number) may conceivably compromise the reliability of the results. Both are tested in
this section.

Two selected simulations with imposed twofold longitudinal symmetry have been
compared with full-sphere calculations at the same parameter values. For fully de-
veloped convection at Ra∗/Ra∗crit = 31, E = 10−4, the amplitude of time-dependent
fluctuations in the global properties is slightly larger with imposed symmetry. How-
ever, the mean values, averaged over t = 104 (one diffusion time) agree within 1%. In
the regime of strongly oscillatory convection at E = 3× 10−5 and Ra∗/Ra∗crit = 22, a
calculation was started with twofold symmetry and continued until a characteristic
oscillation pattern had been established. The run was then continued with the sym-
metry assumption relaxed. A weak thermal perturbation of order m = 1 was added
to facilitate the excitation of odd-order modes. After a short time they contained the
same power as the even-order modes (aside from m = 0). No fundamental differences
before and after the change are found in the period and amplitude of the oscillations
or in time-averaged properties (figure 4).

Several time scales must be considered for the evolution of the solutions. At low
Rayleigh number it is expected that the solution equilibrates on a viscous time scale,
more precisely on the scale of the slowest relevant viscous decay mode. The strongly
oscillatory regime offers an opportunity to estimate this relaxation time, from the
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Ra∗/Ra∗crit Re Repol E`=1
tor /Ek Nu Varpol Nr `max ms

E = 3× 10−4

1.61 3.4 0.39 0.39 1.058 0 49 48 1
3.22 5.8 0.64 0.64 1.124 0 33 53 1
5.36 41.0 12.6 0.66 1.342 0.25 33 53 1
6.70 60.9 15.3 0.743 1.454 0.34 33 53 1
8.04 80.6 19.6 0.802 1.564 0.45 33 53 1

11.5 136.0 31.1 0.845 2.04 0.33 33 53 1
16.1 205.0 51.1 0.837 2.95 0.15 41 66 1
21.4 273.0 75.8 0.812 4.09 0.14 41 66 1
37.5 407.0 136.0 0.746 6.52 0.08 41 80 1
53.4 490.0 183.0 0.68 8.37 0.07 41 80 1
80.4 580.0 253.0 0.57 10.7 0.06 49 106 1

107.0 633.0 323.0 0.42 12.6 0.06 49 106 1

E = 10−4

1.15 4.9 2.3 0.18 1.020 0 33 42 2
1.54 9.7 3.6 0.47 1.044 0 33 42 2
3.23 27.9 6.8 0.74 1.107 0 33 42 2
3.70 32.6 7.5 0.76 1.120 0.33 33 42 2
4.30 41.1 8.2 0.805 1.123 0.33 33 53 2
5.13 49.6 9.7 0.816 1.152 0.38 33 53 2
6.42 76.4 14.1 0.856 1.255 0.42 41 64 2
8.60 128.0 21.5 0.895 1.41 0.86 41 64 2

11.5 212.0 35.4 0.912 1.74 1.07 41 85 2
16.0 355.0 58.3 0.925 2.52 0.71 41 85 2
23.0 528.0 97.4 0.916 3.83 0.32 41 85 2
30.7 699.0 143.0 0.903 5.45 0.20 41 85 2
50.0 977.0 235.0 0.871 8.55 0.12 49 106 2
77.0 1250.0 340.0 0.840 11.8 0.10 49 106 2

100.0 1420.0 434.0 0.797 15.4 0.07 65 134 2

E = 3× 10−5

1.19 6.1 2.7 0.29 1.015 0 33 53 2
1.49 12.3 4.0 0.57 1.031 0 33 53 2
2.24 25.3 5.6 0.72 1.051 0.23 33 53 2
4.48 75.6 11.7 0.884 1.125 0.57 41 80 2
7.46 173.0 22.8 0.924 1.27 1.02 49 106 2

11.6 423.0 51.8 0.952 1.74 1.56 41 85 2
16.8 725.0 78.7 0.967 2.32 1.12 49 106 2
22.4 1053.0 119.0 0.968 3.24 0.80 49 106 2
33.6 1510.0 204.0 0.956 5.43 0.30 65 133 2
44.8 1920.0 286.0 0.949 7.75 0.23 65 133 2
74.6 2730.0 503.0 0.926 13.7 0.11 81 168 2

101.0 3390.0 656.0 0.914 17.9 0.07 81 168 2
134.0 3740.0 877.0 0.885 24.7 0.07 81 201 2

E = 10−5

1.49 14.5 4.5 0.62 1.026 0 65 134 16
11.9 762.0 66.0 0.973 1.61 1.90 65 134 2
19.9 1710.0 138.0 0.982 2.61 1.57 65 134 2
29.9 2700.0 222.0 0.983 4.14 0.98 81 168 2
44.8 3850.0 387.0 0.976 7.33 0.40 81 168 2
79.6 6070.0 790.0 0.963 16.6 0.15 81 201 4

105.0 7310.0 1040.0 0.958 22.9 0.08 81 201 4

E = 10−5 rigid

42.6 1206.0 607.0 0.296 12.9 0.12 81 168 4

Table 2. Results for Pr = 1.
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Figure 4. Kinetic energy vs. time for E = 3× 10−5 and Ra/Racrit = 22.4. The upper line is the full
energy and the lower line is the poloidal part tenfold enhanced. The vertical line marks the time at
which the original restriction to even-order modes is relaxed.
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Figure 5. Kinetic energy vs. time for E = 10−4 and Ra∗/Ra∗crit = 30.7, ms = 2. The upper line is the
full energy and the lower line is the poloidal part tenfold enhanced.

almost exponential decay of the kinetic energy during periods when convection is
inactive. From the example in figure 1(a) a decay time of 0.05D2/ν is derived. Other
cases give very similar results. At low and intermediate Rayleigh number each run
was followed for at least 0.3 diffusion times (or six relaxation times), some for much
longer.

In the regime of fully developed convection the advective transport of momentum
(and heat) should control the adjustment time. The inverse of the poloidal Rossby
number provides a measure of the time scale of radial advection, i.e. the time needed
for a particle to traverse one shell thickness. All runs at Ra∗/Ra∗crit > 20 cover at least
25 radial advection times. For the case in figure 1(c) a least-squares fit to the total
kinetic energy of the form E(t) = E∞ − a exp(−γt) has been calculated (excluding
times t < 300 when the adjustment seems to proceed at a more rapid rate than later).
The best-fitting value γ = 6.65× 10−4 corresponds to a relaxation time of 0.016D2/ν.
This is faster by a factor of three than the purely viscous relaxation determined above
and it suggests that the total run time corresponding to 0.093D2/ν is adequate. The
best-fit value of E∞ = 2.68× 107 differs by less than 1% from the simple average of
the energy for t > 5000, which has been used to calculate the Reynolds number listed
in table 2.

In order to check if very long time scales may be present in the evolution of
the solutions, the case of fully developed convection at E = 10−4, Ra∗/Ra∗crit = 31
was selected to run until t = 105, i.e. ten diffusion times. This run time is about
50 times longer than what was typically employed at similar parameter values. No
long-term variations are seen in the time series of the total and poloidal kinetic energy
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(figure 5). The long-term averages differ by no more than 2% from the originally
derived values for the interval t = 570–2000, suggesting that the solution is past the
initial transient at t > 570. To estimate the uncertainty which arises from averaging
the chaotic fluctuations over a limited time interval, the complete time series has been
subdivided into 66 intervals of length 1500 and averages have been calculated for
each interval separately. The 2σ standard deviation of the individual averages from
the global mean is less than 3% for all properties listed in table 2.

These tests suggest that the results are not seriously affected by the azimuthal
symmetry assumption. It may have an effect in certain regimes. For example, the
imposed symmetry would suppress a mode termed localized convection by Grote
& Busse (2001), who found that active convection was restricted to one azimuthal
hemisphere at 3.5 times supercritical Rayleigh number. The tests also suggest that
the results are equilibrated, although it cannot be excluded that long time scales
may play a role in parameter regimes where such tests are not possible because of
computational limitations. The error of the tabulated values, arising from limited
integration time, is unlikely to exceed a few percent.

3.3. Scaling in the limit E → 0

When represented as function of Ra/Racrit the characteristic properties of the flow
show a strong dependence on the Ekman number (compare figure 1 in Christensen
2001). The asymptotic behaviour in the limit where viscosity (and thermal diffusivity)
play a negligible role, i.e. at very low Ekman number and strongly supercritical
Rayleigh number, is of particular interest. For investigating whether such asymptotic
behaviour can be found in the present results, the conventional Rayleigh number Ra
is not very useful. Instead the numerical results are analysed as a function of the
modified Rayleigh number Ra∗, which depends on neither diffusion constant. In this
case, differences in the viscous force are solely expressed by different values of the
Ekman number. Also, substituting the Nusselt number Nu by its modified value Nu∗
removes the dependence on thermal diffusivity.

Figure 6 shows various flow properties plotted against Ra∗. In order to emphasize
the regime of strong zonal wind, only cases are included in which the zonal flow
carries at least 75% of the total energy. The two Rossby numbers in figure 6(a, b)
indicate respectively the vigour of the flow in general (dominated by the zonal wind
contribution) and that of the convective part alone. There is a change in slope, in
particular for Ro, which at high Ra∗ increases less with the Rayleigh number than the
poloidal Rossby number. The ratio of total kinetic energy to that in the non-zonal
part of the flow in figure 6(c), which for values� 1 is almost the same as the ratio of
zonal energy to non-zonal energy, rises with Ra∗ at low Rayleigh number. It reaches
a maximum value where the flow passes from the oscillatory regime to the fully
developed convection regime, but falls with increasing Ra∗ in the latter regime. The
height of the maximum depends on the Ekman number. The slopes for the modified
Nusselt number (figure 6d ) flatten out towards low Rayleigh number. This is because
in rotating convection the heat flux significantly exceeds the conductive flux only in
the fully developed regime when the convective flow fills the entire shell (Tilgner &
Busse 1997). In this regime the Nusselt number rises sharply with Ra∗.

For a given value of Ra∗ different values of E (shown as different symbols in
figure 6) indicate the varying influence of viscous stresses, while everything else
remains equal. The four different data sets seem to converge when Ra∗ is fixed and
the Ekman number is decreased. The convergence is quite obvious for the energy
ratios in figure 6(c) on the falling branches of the curves at high Ra∗, but is also
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Figure 6. Time-averaged properties plotted against modified Rayleigh number for Pr = 1. (a)
Rossby number, (b) Rossby number for the poloidal flow component, (c) ratio of total kinetic
energy to that of the non-zonal flow, (d ) modified Nusselt number. Triangles are for E = 3× 10−4,
diamonds for E = 10−4, circles for E = 3× 10−5, and squares for E = 10−5.

found for the other flow properties. It is best seen for a fixed Ra∗ ≈ 0.1, where data
for all four values of E are available. In fact, at Ra∗ = 0.1 an asymptotic limit seems
to be almost reached at the lowest value of E = 10−5, i.e. in this case viscous friction
plays a small role. The asymptotic limit is approached more rapidly, i.e. already at
larger Ekman number, for high values of Ra∗.

Possible asymptotes for the limit E → 0 are drawn as solid lines in figure 6. They
have been estimated by eye, using the results at the highest values of the Rayleigh
number to align the slopes. The following asymptotic dependences are suggested:

Ro = 0.19(Ra∗)2/5, (3.1)

Ropol = 0.048(Ra∗)4/5, (3.2)

Ek/E
nz = 3.8(Ra∗)−0.85, (3.3)

Nu∗ = 0.0031(Ra∗)5/4. (3.4)

In figure 7 the same results are plotted against the flux-based Rayleigh number
Ra∗q = Ra∗Nu∗. Overall the figure is very similar, but the slopes have changed. In this
case the slope for the poloidal Rossby has been taken from a scaling analysis (see
§ 3.4):

Ro = 0.65(Ra∗q)
1/5, (3.5)

Ropol = 0.54(Ra∗q)
2/5, (3.6)

Ek/E
nz = 0.36(Ra∗q)

−2/5, (3.7)

Nu∗ = 0.077(Ra∗q)
5/9. (3.8)

How closely the asymptotic limit is approached depends on the degree of super-



126 U. R. Christensen

0.3

0.1

0.03

0.01

Ro

(a)

0.01

0.003

0.001

0.03

Ropol

(b)

Ra*
q

(c)

(d)

100

30

10

3

1

10–3

10–4

10–5

Nu*

10–510–610–7 10–4 10–3

Ra*
q

10–510–610–7 10–4 10–3

Ek

Enz

Figure 7. Time-averaged properties plotted against modified flux-based Rayleigh number for
Pr = 1. (a) Rossby number, (b) Rossby number for the poloidal flow component, (c) ratio of total
kinetic energy to that of the non-zonal flow, (d ) modified Nusselt number. Symbols for different
Ekman numbers as in figure 6.
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Figure 8. Properties as in figure 7 normalized by their asymptotic values and plotted against
Ra∗E−2/3. (a) Rossby number, (b) Rossby number for the poloidal flow component, (c) ratio of
total kinetic energy to that of the non-zonal flow, (d ) modified Nusselt number. Symbols for different
Ekman numbers as in figure 6.

criticality. To quantify the deviation of the four properties, the numerical results have
been normalized with the predicted asymptotic values (3.5)–(3.8). A normalized value
of 1 means that the numerical result falls exactly on the asymptote. In figure 8 the
normalized values are plotted against Ra∗E−2/3. In the limit of small Ekman number



Convection in rotating spherical shells 127

this is proportional to the ratio Ra∗/Ra∗crit. Taking the asymptotic form for the critical
Rayleigh number was found to give a better fit than plotting the normalized data
against the actual ratio Ra∗/Ra∗crit. The points for different Ekman number in the
various diagrams in figure 8 are very nearly collapsed on a single curve. This lends
further support to the correctness of the asymptotic laws. The asymptotic limit is
virtually reached when

200E2/3 < Ra∗. (3.9)

3.4. Comparison with scaling analysis; Reynolds stresses

Cardin & Olson (1994) presented a simplified analysis of convection in a rotating
sphere based on the ‘quasi-geostrophic assumption’ of columnar convection cells. At
leading order the balance is between the Coriolis force and pressure gradient. Because
of the inclination of the boundaries, geostrophy cannot be perfectly satisfied and to
next order an equation for the vorticity averaged along the column is derived into
which buoyancy forces and the local slope of the boundary at the ends of the column
enter. Aubert et al. (2001) use this theory for deriving scaling relations for the de-
pendence of the convective velocity and other relevant properties on the fundamental
control parameters. They obtain different scaling relations for two limiting cases,
where they neglect either the viscous term or the inertia term in their equation. In the
limit of negligible viscosity they arrive at a simple 2/5 power dependence between Ra∗q
(called γ in their notation) and the characteristic Rossby number for the convective
flow. This dependence has been used for the slope of the asymptote in figure 7(b)
and is in good agreement with the trend in the numerical results. When viscosity
is retained and inertia dropped, the scaling relation given by Aubert et al. (2001) is
Ropol ∼ (Ra∗q)1/2E−1/6. Earlier, Zhang (1991) had used finite-amplitude calculations at
infinite Prandtl number, i.e. without inertial effects, at slightly supercritical Rayleigh
number to derive a scaling relation for the convective velocity u ∼ (Ra− Racrit)1/2 in
the limit of low Ekman number. Since Nu ' 1 at weakly supercritical Rayleigh num-
ber there is no significant difference between the flux-based and the temperature-based
Rayleigh number and when Zhang’s (1991) results are extrapolated to Ra � Racrit
the dependence on the Rayleigh number is the same as that derived by Aubert et al.
(2001) in the viscous limit. The steepening of the slope towards lower Rayleigh num-
ber in figure 7(b), where at small Reynolds numbers inertia becomes less important
in comparison to viscosity, agrees qualitatively with these predictions.

The scaling analysis by Aubert et al. (2001) predicts in the ‘inertial limit’ that the
characteristic size of the convective vortices increases weakly with the 1/5 power of the
Rayleigh number. I have not attempted here to quantify the vortex size, but an indirect
argument for an increase with the Rayleigh number can be advanced. The Nusselt
number cannot be predicted from the scaling analysis. The relation between Nu∗ and
Ra∗q derived from the numerical results has implications for the characteristic non-
dimensional temperature contrasts δT between rising and sinking flow in a vortex. In
the limit Nu� 1 the modified Nusselt number scales as Nu∗ ∼ RopolδT . Because Nu∗
increases more strongly with the Rayleigh number than the convective velocity, δT
must increase with Ra∗q , though weakly. This increase of the temperature fluctuations
is more plausible when the size of the convective vortices also increases with the
Rayleigh number.

The zonal flow is driven by Reynolds stresses arising from a systematic correlation
of the azimuthal component vφ and the cylindrically radial component vs of the con-
vective flow. Here vφ = uφ −Uφ and vs = us are the ‘fluctuating’ velocity components
and Uφ is the azimuthal average of uφ, that is, the large-scale zonal flow. Reynolds
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(a) (b) (c) (d)

Figure 9. Properties averaged in azimuth and time in a cross-section along the rotation axis for
(a, b) Ra∗ = 0.0015 and (c, d ) Ra∗ = 0.045 at E = 10−5 and Pr = 1, i.e. the cases shown in figures 2
and 3, respectively. (a) and (c) The Reynolds stress {〈vφvs〉} with contour intervals of 3× 10−9 and
8× 10−7, respectively. (b) and (d ) Uφ with contours of 3× 10−5 and 8× 10−3, respectively. Broken
lines for negative contour values; greyscale indicates absolute magnitude.

stresses are usually associated with turbulent boundary layers, where they take energy
out of the large-scale flow. Here they feed energy into the zonal flow. For some cases
the time-averaged Reynolds stress has been calculated explicitly and is illustrated in
figure 9(a, c). The Reynolds stress (more specifically, its φs-component) is given by

SR(θ, r) = {〈vsvφ〉} (3.10)

where 〈 〉 stands for the average taken over φ and { } for the time average. At weakly
supercritical Rayleigh number the only significant Reynolds stresses are positive and
are nearly uniform along the z-direction inside the convection columns (figure 9a).
They transport angular momentum in the radially outward direction, which explains
the variation of Uφ with s (figure 9b).

The scaling analysis by Aubert et al. (2001) for the zonal flow velocity is not
applicable here because they assumed rigid boundaries. In that case the zonal flow is
limited by Ekman layer friction, whereas with free boundaries the Reynolds stresses
are balanced by the weaker viscous stress

SV = Es∂

(
Uφ

s

)/
∂s (3.11)

due to internal friction. When estimating the Reynolds stresses, Aubert et al. (2001)
assumed that the degree of correlation between vs and vφ is independent of the
Rayleigh number, in which case the Reynolds stress increases proportionally to
(Repol)2. Because the length scale on which Uφ varies is of order one, balancing the
stresses in equations (3.10) and (3.11) gives

Rezon ∼ (Repol)2 (3.12)

where Rezon is the Reynolds number of the zonal flow component alone. The quadratic
relation is confirmed for weakly supercritical conditions (figure 10), but breaks down
for convective Reynolds numbers Repol > 10. This causes the slopes in the diagrams
for the kinetic energy ratio in figures 6(c) and 7(c) to bend over and eventually to
become negative.
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Figure 10. Reynolds number of the mean zonal flow versus Reynolds number of the convective
flow for E = 10−4. The solid line has a slope of 2.

Ra∗/Ra∗crit 1.49 11.9 44.8 42.8 105.0

b.c. F F F R F
Cout
R 0.831 0.392 0.185 0.150 0.051

Cin
R 0.008 0.074 −0.055 0.017 −0.030

Table 3. Correlations at E = 10−5; boundary condition b.c. F = free, R = rigid.

The deviation from the quadratic dependence is caused by a decorrelation of the
fluctuating velocity components with increasing Rayleigh number. In some cases the
correlation coefficient

CR =
{[〈vsvφ〉]}{[√
〈v2
s 〉〈v2

φ〉
]} (3.13)

has been calculated, where [ ] indicates the average taken over z and s. The correlation
has been calculated separately for the regions inside and outside the tangent cylinder
and is listed in table 3, labelled Cin

R and Cout
R , respectively. Outside the tangent cylinder

it decreases from near-perfect correlation at low Rayleigh number to very weak but
still positive correlation at high Rayleigh number.

There seem to be two possible causes for the decorrelation. The preferred tilt of
the convection columns could decrease when inertial and/or buoyancy effects play
an increasingly important role in the force balance at high Rayleigh number. Al-
ternatively, the mean zonal flow may develop shear-flow instabilities, which create
Reynolds stresses of the opposite sign compared to the Reynolds stresses of columnar
convection and largely cancel them. In order to discriminate between these two pos-
sible explanations, one calculation has been done with rigid boundaries at E = 10−5.
Compared with the free-slip case at the same Rayleigh number, about 45 times critical
(table 2), the convection is somewhat stronger and Reynolds stresses are of similar
order, but the zonal flow is much weaker with a Reynolds number of Rezon = 650
compared to 3800 in the free-slip case. The very similar degree of correlation of the
fluctuating velocity components (table 3) suggests that shear-flow instabilities are not
dominant in weakening the driving Reynolds stresses.

A plausible cause for the decorrelation is the gradual loss of geostrophy of the
convection columns at high Rayleigh number, which we note for example in figure 3(c)
where the vortices are no longer continuous along the entire cord in z. The same
disruption of vortices is found also in the case of rigid boundaries (not shown). A
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Ra∗/Ra∗crit Re Repol E`=1
tor /Ek Nu Varpol Nr `max ms

P r = 0.3

1.54 18.7 5.7 0.668 1.013 0 33 42 2
4.1 73.8 12.5 0.864 1.040 0.31 41 64 2
8.2 188.0 29.0 0.907 1.136 0.37 41 64 2

12.4 390.0 67.0 0.910 1.39 0.38 41 64 2
16.5 628.0 133.0 0.882 1.98 0.21 41 85 2
24.7 980.0 261.0 0.832 3.44 0.14 41 85 2
41.2 1370.0 428.0 0.780 5.43 0.09 49 106 2
49.5 1530.0 518.0 0.738 6.62 0.08 65 134 2

Pr = 3

1.54 4.6 2.0 0.206 1.088 0 33 42 2
8.1 58.0 15.1 0.748 2.15 0.28 41 64 2

16.2 170.0 32.5 0.889 3.91 0.34 41 85 2
32.5 363.0 62.3 0.927 6.79 0.24 49 106 2
48.8 510.0 92.4 0.924 9.65 0.18 65 134 2
65.0 640.0 120.0 0.921 12.3 0.13 65 134 2

108.0 893.0 187.0 0.906 17.8 0.09 65 134 2

Table 4. Results for different Prandtl numbers at E = 10−4.

prime cause for the prograde tilt of the convection columns is the convex curvature of
the outer boundary on which the columns impinge (Busse 1983, 1994). Obviously, it
requires nearly perfect geostrophy to maintain the tilt along the entire length in z of
the column. When geostrophy is broken, a vortex near the equatorial plane does not
‘feel’ the curvature of the boundary. This idea is supported by the spatial distribution
of the Reynolds stresses in figure 9(c), which are strongest close to the boundaries.
Although part of the reason is that the convective velocities are somewhat larger in
these regions, the degree of correlation is also found to be higher where the vortices
still ‘feel’ the influence of boundary curvature.

3.5. Effect of Prandtl number

The numerical work by Zhang (1992) and the experimental results by Aubert et al.
(2001) strongly suggested that the value of the Prandtl number plays an important
role in the presence of a strong zonal flow. They observed a dominant zonal wind
only for moderately low Prandtl number Pr 6 1. Here I have studied the influence
of the Prandtl number within the limited range Pr = 0.3–3 for an Ekman number of
10−4. Results are listed in table 4 and can be compared with the data in table 2 for
the same value of the Ekman number.

At weakly supercritical Rayleigh number the strong dependence of the zonal
wind on the Prandtl number is confirmed. At Ra∗/Ra∗crit = 1.54 the contribution of
the mean zonal flow to the total kinetic energy decreases with the Prandtl num-
ber from 67% at Pr = 0.3 to 21% at Pr = 3. However, this strong dependence
does not persist at higher Rayleigh numbers. When the Reynolds number becomes
sufficiently large so that strong Reynolds stresses can develop, a very dominant zonal
flow is also obtained for Pr > 1. The maximum fraction of kinetic energy in the
wind flow (at the optimum Rayleigh number) is nearly independent of the Prandtl
number.

One might hope that in the limit E → 0 the dependence on the Prandtl number
vanishes and the properties of convection and zonal flow depend on Ra∗ or Ra∗q alone.
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Figure 11. Time-averaged properties plotted for different Prandtl number at E = 10−4. (a) Rossby
number, (b) Rossby number for the poloidal flow component, (c) ratio of total kinetic energy to
that of the non-zonal flow, (d ) modified Nusselt number. Diamonds are for Pr = 1, crosses for
Pr = 0.3 and stars for Pr = 3. The asymptotic lines are those given by equations (3.5)–(3.8), but
with Ra∗q replaced by Ra∗qP r−1/4.

But plotting the available data against these Rayleigh numbers (not shown) suggests
a weak dependence on Pr in the asymptotic limit also. The data for different Pr at
E = 10−4 can be collapsed at high Rayleigh number when plotted against Ra∗qP rα,
where the exponent α is in the range of −1/4 to −1/3 (figure 11).

4. Discussion
Although the Ekman numbers used in this study are large in comparison with

planetary values, the convergence of the results with decreasing Ekman number
suggests that a regime is approached where viscosity becomes unimportant. This
limit seems to be almost reached in some of the calculations, which provides a
justification for scaling the numerical results to the planets as done by Christensen
(2001) and Aurnou & Olson (2001). These authors suggested that zonal flow velocities
in agreement with observed values on Jupiter and Saturn can be obtained by the
deep convection mechanism. The asymptotic dependences on the modified Rayleigh
numbers, which are derived from the numerical results, are somewhat uncertain. The
residual deviations from the asymptotes are not negligible and prevent a more rigorous
determination of the exponents, which must be considered as quite tentative. For an
application to the planets this is not too critical, because the numerical calculations
cover the likely values of the modified Rayleigh number in Jupiter or Saturn (see
below) and no extrapolation outside the range is necessary.

Because the driving superadiabatic temperature contrast is unknown for convection
in the Earth’s core or in the gas planets, but observations or estimates are available
for the heat flow, the scaling laws based on the Rayleigh number defined with the
heat flux should be particularly useful. The relevance of the present results is limited
in the case of the Earth’s core because of the influence of the magnetic field and in the
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case of the gas planets because of compressibility effects. Nonetheless it is interesting
to consider what the scaling laws predict for the two systems.

Estimates for the superadiabatic heat flux out of the Earth’s core are of the
order 10 mW m−2 (Buffett et al. 1996), which translates into a value for the Rayleigh
number of Ra∗q ' 10−13. The corresponding value of Ra∗ is 2× 10−6 from (3.8) and

the condition (3.9) is met well for an Ekman number of 10−15. The scaling relations
predict a Rossby number for the convective flow of about 3× 10−6, corresponding
to a velocity of 0.5 mm s−1, which is the order of magnitude estimated from secular
variations of the Earth’s magnetic field (Bloxham & Jackson 1991). The predicted
zonal flow is too large by three orders of magnitude. The strong damping of zonal
flow is not primarily due to friction in the Ekman layer at the boundary towards
the solid mantle, but is mainly caused by electromagnetic Maxwell stresses in the
conducting core which strongly couple the differentially rotating cylinders.

Compressibility is important in the molecular hydrogen envelopes of the major
planets, which extend over many density scale heights. Here lies the main difficulty in
applying the present results, obtained for a Boussinesq fluid, directly to these planets.
For a compressible fluid in the geostrophic limit the Proudman–Taylor theorem holds
for the mass flux ρu in place of the velocity u. Hence both the velocity of columnar
convection and that of the zonal flow would be expected to decrease with depth
in the planets. A reasonable approach for utilizing the Boussinesq results could be
to use the physical properties at the surface of the planets (by definition the 1 bar
pressure level), where the flow velocities are known from observations. Taking Jupiter’s
observed excess heat flux of 6 Wm−2 and D ' 104 km (η ' 0.85), α = 1/T ' 10−2 K−1,
ρ ' 0.2 kg m−3, go ' 25 m s−2, Ω ' 1.75× 10−4 s−1, c ' 14 kJ kg−1 K−1, the flux-based
Rayleigh number is Ra∗q ' 10−6. For this Rayleigh number the scaling relations predict
a Rossby number of 0.04 and a ratio of 1: 90 between the non-zonal and the total
kinetic energy. The corresponding velocity of 70 m s−1 agrees very reasonably with
the observed mean flow velocity at low and mid-latitudes on Jupiter. The ratio of
zonal to non-zonal kinetic energy is also correct on an order-of-magnitude basis, but
slightly on the high side (Ingersoll et al. 1981). However, it remains unclear if the
vortices at the planetary surfaces representing the non-zonal flow are associated with
deep-reaching convection or are instabilities in a shallow atmospheric layer.

At the surfaces of Jupiter and Saturn a substantial number of bands with alternating
flow directions is observed, whereas in the present convection models only a change
from prograde flow near the equator to retrograde flow at high latitude is found.
Models with a larger core radius η = 0.6 (Christensen 2001) exhibited additional
bands of zonal flow with alternating directions inside the tangent cylinder. However,
comparing models for the internal structure of the giant planets (e.g. Guillot 1999) with
the observed zonal wind pattern suggests that multiple bands must exist also outside
the tangent cylinder. Busse (1983, 1994) envisioned that at high Rayleigh number
stacked layers of convection columns would occur and that between these layers
the mean zonal flow would change direction. In the present high-Rayleigh-number
calculations multiple convective vortices exist in the radial direction (figure 3b), though
not in well-defined layers. However, they all create Reynolds stresses of positive sign
outside the tangent cylinder and therefore they do not give rise to multiple zonal flow
bands. In fact, when convex or concave boundary curvature determines the sign of the
Reynolds stresses, it is not clear how alternating bands can be generated. Explaining
the number and spacing of bands at the surfaces of the gas planets remains an
outstanding problem for the deep convection model.
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